Automatic control system (seventh edition)
 ISBN 0-471-36608-0

Examination range: Chapters 2, 3, 4, 5, 6, 7

1. Find the poles and zeros of the following functions (including the ones at infinity, if any). Mark the finite poles with X and the finite zeros with O in the s -plane.
$G(s)=\frac{10(s+2)}{S\left(s^{2}+2 s+2\right)}$
2. Find the Laplace transforms of the following functions. Use the theorems on Laplace transforms if applicable.
$\mathrm{g}(\mathrm{t})=5 t e^{-5 t} u_{s}(t)$
3. Find the poles and zeros of the following functions (including the ones at infinity, if any). Mark the finite poles with X and the finite zeros with O in the s-plane.
$G(s)=\frac{10 s(s+1)}{(s+2)\left(s^{2}+3 s+2\right)}$
4. Solve the following differential equations by means of the Laplace transform. Assume zero initial conditions.
$\frac{d^{2} f(t)}{d t^{2}}+5 \frac{d f(t)}{d t}+4 f(t)=e^{-2 t} u_{s}(t)$
5. Solve the following differential equations by means of the Laplace transform.

$$
\begin{aligned}
& \frac{d x_{1}(t)}{d t}=x_{2}(t) \\
& \frac{d x_{2}(t)}{d t}=-2 x_{1}(t)-3 x_{2}(t)+u_{s}(t) \quad x_{1}(0)=1, x_{2}(0)=0
\end{aligned}
$$

6. Find the inverse Laplace transforms of the following functions.

$$
G(s)=\frac{1}{s(s+2)(s+3)}
$$

7. Apply the gain formula to the SFGs shown in Fig. (a) to find the following transfer functions:
$\frac{Y_{5}}{Y_{1}}$

8. Write the torque equations of the rotational systems shown in Fig. (a) Draw state diagrams using a minimum number of integrators. Write the state equations from the state diagrams. Find the transfer function $\Theta(\mathrm{s}) / \mathrm{T}(\mathrm{s})$ for the system in Fig. (a).

(a)
9. Find the transfer functions $E_{o}(\mathrm{~S}) / E(\mathrm{~s})$ for the circuits shown in Fig.(a)

(a)
10. Find the transfer functions $E_{0}(s) / E(s)$ for the circuits shown in Fig.(b)

(b)
11. The following differential equations represent linear time-invariant systems. Write the dynamic equations (state equations and output equations) in vector-matrix form.
$\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d y(t)}{d t}+y(t)=5 r(t)$
12. The following differential equations represent linear time-invariant systems. Write the dynamic equations (state equations and output equations) in vector-matrix form.
$2 \frac{d^{3} y(t)}{d t^{3}}+3 \frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+2 y(t)=r(t)$
13. The state equations of a linear time-invariant system are represented by

$$
\frac{d x(t)}{d t}=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t)
$$

Find the state transition matrix $\psi(\mathrm{t})$, the characteristic equation, and the eigenvalues of A for the following cases.

$$
A=\left[\begin{array}{cc}
-3 & 0 \\
0 & -3
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

14. The state equations of a linear time-invariant system are represented by

$$
\frac{d x(t)}{d t}=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t)
$$

Find the state transition matrix $\phi(\mathrm{t})$, the characteristic equation, and the eigenvalues of A for the following cases.

$$
A=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

15. For each of the characteristic equations of feedback control systems given, determine the range of K so that the system is asymptotically stable. Determine the value of K so that the system is marginally stable and the frequency of sustained oscillation if applicable.

$$
s^{4}+25 s^{3}+15 s^{2}+20 s+K=0
$$

16. For each of the characteristic equations of feedback control systems given, determine the range of K so that the system is asymptotically stable. Determine the value of K so that the system is marginally stable and the frequency of sustained oscillation if applicable.

$$
s^{3}+20 s^{2}+5 s+10 K=0
$$

17. The block diagram of a motor-control system with tachometer feedback is shown in Fig. 20. Find the range of the tachometer constant K_{t}, so that the system is asymptotically stable.

18. Determine the step, ramp, and parabolic error constants of the following unity-feedback control systems. The forward-path transfer functions are given.

$$
G(s)=\frac{1000}{(1+0.1 s)(1+10 s)}
$$

19. Determine the step, ramp, and parabolic error constants of the following unity-feedback control systems. The forward-path transfer functions are given.

$$
G(s)=\frac{1000}{S(S+10)(S+100)}
$$

20. The unit-step response of a linear control system is shown in Fig. 21 Find the transfer function of a second-order prototype system to model the system.

Fig. 21

